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Abstract

Linear stability studies of complex flows require that efficient numerical methods be devised for predicting growth

rates of multi-dimensional perturbations. For one-dimensional (1D) basic flows – i.e. of planar, cylindrical or spherical

symmetry – a general numerical approach is viable which consists in solving simultaneously the one-dimensional

equations of gas dynamics and their linearized forms for three-dimensional perturbations. Extensions of artificial

viscosity methods have thus been used in the past. More recently [Equations aux d�eriv�ees partielles et applications,

articles d�edi�es �a J.-L. Lions, 1998], Godunov-type schemes for single-fluid flows of gas dynamics and magnetohy-

drodynamics have been proposed. Pursuing this effort, we introduce, within the Lagrangian perturbation approach, a

class of Godunov-type schemes which is well suited for solving multi-material problems of gas dynamics. These schemes

are developed here for the planar-symmetric case and comprise two second-order extensions. The numerical capabilities

of these methods are illustrated by computations of Richtmyer–Meshkov instabilities occurring at a single material

interface. A systematic comparison of numerically computed growth rates with results of the linear theory for the

Richtmyer–Meshkov instability is provided.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Many problems in fluid mechanics and in physics lead to stability studies of complex flows. Most often,

such stability studies cannot be performed analytically and must be investigated numerically. In any case,
an essential preliminary step consists in performing a linear stability analysis of the basic flow under study.

Hence, there is a demand for devising efficient numerical methods for predicting linear perturbation evo-
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lutions in complex flows. Fortunately, in some situations – such as those found in inertial confinement

fusion (ICF), our primary motivation here – the basic flow is one-dimensional – i.e. planar, cylindrically or

spherically symmetric – so that the linearized stability problem reduces to computing multi-dimensional
linear perturbations about a 1D flow. This task may be achieved in a fairly inexpensive, reliable and ac-

curate way by using 1D numerical codes for computing simultaneously the basic flow and the modal

(Fourier, in planar symmetry) components of its linear perturbations. The underlying fluid code may either

be Eulerian or Lagrangian. Here we shall focus on the linear Lagrangian perturbation approach which

appears to be well suited for studying the linear hydrodynamic stability of ICF pellets, and restrict our-

selves, for the sake of simplicity, to the case of 1D planar-symmetric basic flows. The case of 1D spherically-

symmetric basic flows will be addressed in a subsequent paper.

This linear perturbation computation approach offers decisive advantages over 2D or 3D computations.
First of all, given the computational grid coarseness commonly advised for obtaining ‘‘accurate’’ 2D cal-

culations of hydrodynamic instabilities (e.g. see [19]), the computational burden needed for solving the one-

dimensional equations for the basic flow and its perturbations is, at least, two (respectively four) orders of

magnitude lower than that required by standard 2D (resp. 3D) methods. Thanks to this reduced compu-

tational cost, ‘‘converged’’ results of linear stability problems for complex flows may be produced in a very

efficient manner. Hence, for instance, detailed and accurate descriptions of the spatial structures and time

evolutions of perturbations in a planar ablation flow – in the so-called ‘‘ablative Richtmyer–Meshkov

instability’’ configuration [16] – have been obtained for a wide range of perturbation wavenumbers [4]. Such
results, corroborating in part the qualitative analysis of [16], are yet to be produced by means of 2D

computations. Indeed, obtaining the same quality of data from 2D/3D simulations would be a tedious and

cumbersome task. This efficiency – unmatched by 2D/3D computations – is especially needed in ICF ap-

plications where one is interested in obtaining detailed linear responses – both in time and space – of

complex implosion flows for a wide range of initial and boundary condition perturbations. Furthermore,

computing linear perturbations avoids the accuracy limitations faced by 2D/3D computations when dealing

with perturbations of small relative amplitudes – a situation inherent to linear stability analyses.

These features have been previously exploited in numerous linear stability analyses of unsteady flows,
whether in gas dynamics [6,17], astrophysics [7], or in the more specific context of ICF [10,18,24,31]. When

dealing with shock waves, these earlier works relied on artificial viscosity methods under the form of ap-

propriate linearizations of the classical scheme of von Neumann and Richtmyer [30]. More recently, this

linear perturbation computation approach has been reconsidered within the framework of nonlinear hy-

perbolic systems of conservation laws [11,12,14,28]. In particular, Godunov-type schemes based on a lin-

earization of the Roe method in Lagrangian coordinates [27] have been proposed and have produced

convincing results for single fluid flows of gas dynamics and of magnetohydrodynamics [28]. Here, we

pursue this effort having in mind applications to linear stability analyses of shocked material discontinuities
in multi-material flows. Following the analysis by Despr�es [9] of Lagrangian systems of conservation laws,

we propose a class of Godunov-type schemes for computing simultaneously the basic and the linearized

flows. Using an approximate Riemann solver due to Despr�es [9], these schemes are well suited for handling

multi-material problems of gas dynamics [20]. As an illustration of the scheme numerical capabilities we

have chosen to consider the simple, yet demanding, configuration of the Richtmyer–Meshkov instability

[25,29] for a single material interface separating perfect gases of different adiabatic exponents. (Note that

this kind of configurations had already been treated with an artificial viscosity method in [17] and more

recently [13] with the linearized Roe method, the latter, however, dealing exclusively with gases of identical
adiabatic exponents.) More complex flow configurations may equally be considered but are beyond the

scope of this paper.

The plan of the present paper is as follows. In Section 2, we introduce, under the assumptions of gas

dynamics, the linearized Cauchy problems for stability analyses in terms of Lagrangian perturbations. In

particular, the set of linearized equations are fully derived with the help of a Helmholtz decomposition of



82 J.-M. Clarisse et al. / Journal of Computational Physics 198 (2004) 80–105
the transverse linear motion (Appendix B), and initial conditions for geometrically perturbed material

interfaces are discussed (Appendix C). In Section 3, we introduce the present class of Godunov-type

schemes including second-order extensions of these methods. Section 4 presents the numerical application
of these schemes to the Richtmyer–Meshkov instability which occurs at a single material interface between

two different perfect gases. A systematic quantitative comparison of the numerically computed growth rates

with results found in the literature [34,35] is carried out for various incident shock strengths, initial fluid

density ratios and adiabatic exponent pairs.
2. Linearized Cauchy problems for stability analyses in Lagrangian perturbations

Consider the motion of an inviscid, non-heat-conducting fluid, obeying an arbitrary equation of state.

Given a cartesian coordinate system (x1; x2; x3) of orthonormal vector basis (e1; e2; e3), and a Lagrangian

coordinate system (n1; n2; n3), the equations of a fluid particle trajectory t 7!xðn; tÞ read

ox

ot
ðn; tÞ ¼ uðn; tÞ; ð1Þ

where uð¼ ujejÞ denotes the particle velocity. (Herein summation over a repeated subscript is always implied.)

For any function u of the variables ðn; tÞ, we use the notation �u to designate the function of ðx; tÞ defined by

�u xðn; tÞ; tð Þ ¼defuðn; tÞ:

With this convention, the Lagrangian form of the equations of motion – in the absence of external forces –

comes as

oV

ot
þ s

o

oxj
GjðVÞ ¼ 0; ð2Þ

with

V ¼
s
u

e

0@ 1A; GjðVÞ ¼
�uj
pej
puj

0@ 1A; 16 j6 3; ð3Þ

where s is the fluid specific volume, p the pressure and e the specific total energy. This system of equations is

completed by the fluid equation of state, here under the form

p ¼ P ðs;EÞ; ð4Þ

giving the pressure of the fluid as a function of its specific volume and specific internal energy
E ¼ e� ujuj=2. With these definitions, solutions to (2) take values in the set of states given by

V ¼ V; s
�

> 0; u 2 R3; e� ujuj=2 > 0
�
:

Independently of Eq. (2), a first integral of the evolution equation for the fluid specific volume s is

provided by the conservation of mass written down for an infinitesimal fluid element. Letting

Jðn; tÞ ¼ det
oxi
onj

ðn; tÞ
� �

ð5Þ

denote the Jacobian of the transformation n 7!x, this first integral taken at the point n may be written as
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qðn; tÞJðn; tÞ ¼ qHðnÞ; ð6Þ

where qH stands for the fluid density in some reference state – possibly virtual – of the fluid for which
JðnÞ ¼ 1.

Given a real positive constant T we consider, in the following, Cauchy problems (initial value problems –

IVPs) of the kind:

Find a pair of functions ðV; xÞ : ðn; tÞ 2 R3 � ð0; T Þ 7!ðV; xÞðn; tÞ 2 V� R3 solution of

oV
ot þ s o

oxj
GjðVÞ ¼ 0; ox

ot ¼ u; ðn; tÞ 2 R3 � ð0; T Þ;
ðV; xÞðn; 0Þ ¼ ðV0; x0ÞðnÞ; n 2 R3;

(
ð7Þ

where the initial data ðV0; x0Þ are a priori arbitrary.

As is well known, such IVPs may be ill-posed in the class of C1 functions defined in R3 � ð0; T Þ and weak

solutions, when they exist, are to be sought as piecewise smooth distributions over R3 � ð0; T Þ. When

studying a solution, say V0, of such an IVP, the question of its stability with respect to perturbations of its

initial data V0
0 is one that naturally arises in many problems of fluid mechanics.

Such a stability problem may be conveniently formulated in terms of a perturbation parameter, say e 2 R,

as follows. Let V0ðn; eÞ denote the perturbed initial data, and let e be chosen so that for e ¼ 0 we have:

V0ðn; 0Þ ¼ V0
0ðnÞ; 8n 2 R3;

where V0
0ðnÞ is the initial value of the IVP (7) satisfied by V0, which, from now on, will be referred to as the

basic solution. Substituting these perturbed initial data in (7) thus define perturbed IVPs whose solutions are

denoted by Vð�; �; eÞ. One then assumes that there exists a non-empty neighborhood of e ¼ 0, say I0, such

that for any e in I0 the corresponding IVP admits a solution. A stability analysis of the basic solution

consists then in studying how the solutions Vð�; �; eÞ depart in space and time from V0 as e spans I0.
In the absence of further assumptions about the nature of the basic solution – e.g. regarding its stea-

diness, periodicity, etc. – one is compelled to solve the IVPs for Vð�; �; eÞ in the independent variables ðn; tÞ.
Furthermore when various initial values for the basic problem (7) have to be considered – as it is the case

here – one has no other choice but to have recourse to numerical approximation methods for handling such

problems. However in the limit of vanishing e – i.e. for infinitesimal perturbations – the stability problem

for the basic solution may be linearized, in which case the set of perturbed IVPs given by e spanning I0, is

replaced by a single IVP for linear perturbations.

Various formulations of this IVP may be obtained depending on the definition of the linear perturba-
tions that is retained: e.g. Eulerian or Lagrangian. Here we choose to adopt the Lagrangian perturbation

approach [2,22] which has been previously used for various problems of gas dynamics [6,17] and ICF

[10,24,31]. This choice is motivated by the fact that relying on Lagrangian perturbations greatly simplifies,

both at the theoretical and computational levels, the handling of geometrically perturbed material dis-

continuities. We note that the method developed in [11–14,28] which is also based on a formulation of the

linear perturbation equations in Lagrangian coordinates, differs however, in general, from the Lagrangian

perturbation approach.
2.1. The linearized problem for Lagrangian perturbations

2.1.1. Principles of Lagrangian perturbations

Let us recall that a Lagrangian perturbation of a given fluid quantity u amounts to considering, for a

fluid particle M, the difference

duMðt; eÞ ¼ uMðt; eÞ � uMðt; 0Þ ¼ u nM; t; eð Þ � u nM; t; 0ð Þ;
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cf. [2,22]. As is obvious, retaining a formulation in terms of Lagrangian perturbations implicitly requires

that the set of fluid particles which is considered, say D, remains the same whatever t in ð0; T Þ and e in I0.

Equivalently, any material quantity which is a function of the fluid particles – e.g. mass, particle Lagrangian
coordinates – must be conserved in D as ðt; eÞ spans ð0; T Þ �I0. Consequently a coordinate system, say

(n1; n2; n3), candidate for formulating the Lagrangian perturbation equations must be such that:

1. The coordinate system (n1; n2; n3) is a Lagrangian system of coordinates for the fluid particles of D, dur-

ing their motion in time and as e spans I0.

2. For any ðt; eÞ in ð0; T Þ �I0, the transformation x 7!n defines, almost everywhere in R3, a diffeomor-

phism of R3.

A direct consequence of the first of these two requirements is that the first integral (6) holds at any point

ðn; t; eÞ of R3 � ð0; T Þ �I0 for which the transformation n 7!x is a diffeomorphism, i.e. we have

qðn; t; eÞJðn; t; eÞ ¼ qHðnÞ: ð8Þ

Following [17], we define formally, for any integer n, a nth-order Lagrangian perturbation operator dnð�Þ as

dn : u �; �; eð Þ 7!dnuð�; �Þ ¼ onu
oen

ð�; �; eÞ
� �����

e¼0

: ð9Þ

The linear Lagrangian perturbation of u is then simply defined as d1u while the basic solution u0 corre-

sponds to d0u. When applying dnð�Þ to any function of some arguments, the variables n1, n2, n3, t and emust

be considered as independent variables, all other variables being taken as dependent. Hence, in particular,

the operator dnð�Þ commutes with any partial differentiation with respect to the Lagrangian coordinates nj,
16 j6 3, or t. That is all there is to know in order to derive the equations for the linear Lagrangian
perturbations of the basic solution.
2.1.2. Conservation laws for linear Lagrangian perturbations

Within the formalism introduced in the previous paragraph, the linearization of the perturbed IVPs

deduced from (7) is carried out formally by applying the operator d1ð�Þ to each of the equations therein.

Applying this operator to initial values is straightforward while the linear Lagrangian perturbation of

the trajectory equation (1) comes down to

od1x

ot
¼ d1u: ð10Þ

Concerning the first integral (8), we infer from Proposition 1 of Appendix A that

d1s ¼ s0
od1xj
onk

d0 onk
oxj

� �
; ð11Þ

which is in fact nothing else but Eq. 12 of ([2], Chapter VIIVII). Using this result and Proposition 2 of Appendix

A, the linear Lagrangian perturbation of Eq. (2) comes readily as the following system of conservation laws:

od1V

ot
þ s0

o

onk
d1GjðVÞ

�
þ o

onk
Gj V0
� � od1xl

onm
d0 onm

oxl

� �
� o

onm
Gj V0
� �

d0 onm
oxl

� �
od1xl
onk

	
d0 onk

oxj

� �
¼ 0; ð12Þ

with, for the definitions of the flux component linear perturbations,

d1GjðVÞ ¼
dGj

dV
V0
� �

d1V; 16 j6 3; ð13Þ
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where dGj=dV denotes the Jacobian matrix of GjðVÞ, 16 j6 3. This system is completed by the linearized

form of the equation of state (4), or

d1p ¼ Psðs0;E0Þd1sþ PEðs0;E0Þd1E; ð14Þ

with d1E ¼ d1e� u0jd
1uj. In this relation, the notations Ps and PE refer to the thermodynamical partial

derivatives ðoP=osÞE and ðoP=oEÞs, respectively.
The above linearization procedure makes sense if V0 is a smooth enough basic solution. When this is not

the case – as when V0 presents a material discontinuity or a shock front – Eq. (12) is a first-order linear

system for d1V with discontinuous coefficients. Regardless of the smoothness of the initial data d1V0, the

Cauchy problem associated to (12) is in general ill-posed in the class of functions. In fact solutions must be

sought in a class of measures: see [3,11]. Such peculiarities are of course due to the choice of a general

approach in solving the above IVPs. An alternative approach, which is classical in fluid mechanics, consists

in isolating the discontinuities of the basic solution and use the corresponding jump relations as boundary

conditions for the perturbations (e.g. see [23,35]). However in the present context, this approach would
imply keeping track of an arbitrary number of discontinuities as the basic solution evolves in time, a task

which could rapidly become intractable in practice. On the other hand material discontinuities, such as

contact discontinuities separating immiscible fluids, are handled in a systematic and simple way due to the

Lagrangian description of the linearized fluid motion. Indeed Godlewski et al. [12] have shown that in this

case the solutions of the linearized Cauchy problems for a contact discontinuity of a single fluid belong to

the class of functions rather than to a class of measures.
2.2. Particular case of one-dimensional motions in planar symmetry

We now turn to the particular situation which is of primary interest in this paper, namely the case of

basic solutions corresponding to 1D motions with planar symmetry.

2.2.1. Definition of the Lagrangian coordinate system (n1,n2,n3)
Having in mind the requirements (see Section 2.1) bearing on the Lagrangian coordinate system

(n1; n2; n3), and assuming that the x1-axis coincides with the direction of the basic motion, we define, quite

naturally, the coordinate n1 to be such that

n1 ¼
Z

�q0ðx1; tÞdx1; ð15Þ

for all t in ð0; T Þ, and choose n2 and n3 to be the constant coordinates in the x2x3-plane – or transverse plane

– of the fluid particles in their basic flow motions. With this definition, Eqs. (1) and (2) satisfied by the basic

solution ðV0; x0Þ reduce to the classical form of the one-dimensional gas dynamics equations written in
Lagrangian coordinates, namely

oV0

ot
þ o

on1
f V0
� �

¼ 0; ð16aÞ
ox01
ot

¼ u01; ð16bÞ
x0i ¼ cst; i ¼ 2; 3; ð16cÞ

with the notations
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V ¼
s
u1
e

0@ 1A; fðVÞ ¼
�u1
p
pu1

0@ 1A: ð17Þ

The system of linear perturbation conservation laws (12) takes also a much simpler form, especially once a

Helmholtz decomposition of the linearized motion in the transverse plane is performed: see Appendix B.

Furthermore, the resulting 3D system of Eqs. (B.3), (B.4), (B.6) and (B.8) may then be reduced to a 1D

system for the Fourier components – in the transverse plane – of the linear perturbations.
2.2.2. Transverse Fourier component equations

Indeed, introducing for any function d1uðn; tÞ the notation

ûðn1; t; k?Þ ¼
Z
R2

d1uðn; tÞ exp iðk2n2f þ k3n3Þgdn3 dn2;

where k? ¼ k2e2 þ k3e3 is the transverse wavevector, the linear perturbation equations (10) and (12) are

replaced by the ðn2; n3Þ-Fourier transforms of Eqs. (B.3), (B.4), (B.6), (B.8) and (B.9), or

oV̂

ot
þ o

on1

df

dV
V0
� �

V̂

� 	
¼ � o

on1
f V0
� �

Ĥþ s0X̂
1

0

�p0

0@ 1A; ð18aÞ
oX̂
ot

¼ k2? s0p̂
�

� op0

on1
bx1�; ð18bÞ
o bx1
ot

¼ bu1 ; ð18cÞ
oĤ
ot

¼ X̂; ð18dÞ

with: the definitions (17) for the vectors V0, V̂ and f, the Fourier transforms of Eq. (B.7) for the transverse
dilatation Ĥ and expansion X̂, and the notation k? ¼ kk?k. Hence the linear perturbation transverse

Fourier component equations consist in: (i) an inhomogeneous system of 1D linear conservation laws (18a),

and (ii) time-differential equations (18b–d), the whole being supplemented by the Fourier transforms of the

linearized equation of state (14), i.e.

p̂ ¼ Ps s0;E0
� �

ŝþ PE s0;E0
� �

Ê ð19Þ

with Ê ¼ ê� u01 bu1 , and of the first integral (B.1) which reads

ŝ ¼ o bx1
on1

þ s0Ĥ: ð20Þ

As the transverse wavevector k? only intervenes in (18)–(20) through its modulus, differences among

Fourier components of identical wavenumbers but distinct wavevectors only result from differences in their

respective initial and boundary conditions.
A broad range of initial conditions for the above equations may be considered. For multi-material flows,

the case of geometrically perturbed material contact discontinuities is of crucial importance as these are

prone to Rayleigh–Taylor and Richtmyer–Meshkov instabilities. The simplest configuration of a single



J.-M. Clarisse et al. / Journal of Computational Physics 198 (2004) 80–105 87
material interface between two immiscible fluids of arbitrary equations of state is addressed in Appendix C.

In particular, it appears that initial conditions in this case may be chosen – within the Lagrangian per-

turbation approach – in the class of functions rather than – for the perturbation method of [13] – in a class
of measures. This result turns out to be very useful in practical applications: see Section 4.
3. Numerical schemes

We propose in this section to derive numerical schemes for computing simultaneously the basic and the

linearized flow solutions to (16) and (18). If a Godunov-type method for computing the linearized flow

solutions has already been developed in [28], this method – based on a Roe solver – hardly applies in multi-
material problems, the difficulty lying in the definition of the Roe matrix at the interface between two

different materials. Here, benefiting from the formalism described by Despr�es in [9], we show how a

Godunov-type method can be easily achieved in this case.

Herein, for simplicity, the subscript 1 relative to the longitudinal variables (n ¼ n1, x ¼ x1 and u ¼ u1)
and the superscript 0 relative to the basic flow (V ¼ V0) have been removed.

3.1. Numerical schemes for the basic flow

In this section, we focus on the discretization of (16a) satisfied by V, namely

oV

ot
þ o

on
f Vð Þ ¼ 0: ð21Þ

We first introduce a class of numerical schemes for computing the basic solution V to (21). Given a mesh

size Dnj and a time step Dt, we define an approximation Vn
j of Vðnj; tnÞ at the point ðnj; tnÞ. The one-step (in

time) explicit scheme takes the following form:

Vnþ1
j ¼ Vn

j �
Dt
Dnj

f Vð Þnjþ1
2



� f Vð Þnj�1

2

�
; ð22Þ

where fðVÞnjþ1
2
is the numerical flux that we propose to discuss now. Letting

w ¼ p
�u

� �
; B ¼ 0 1

1 0

� �
; ð23Þ

it is a simple matter to check that the lagrangian flux (17) can be rewritten as

fðVÞ ¼ Bw
� 1

2
wtBw

� �
: ð24Þ

This formula has an important consequence in terms of numerical schemes: instead of studying the Ja-

cobian matrix df=dV which is a 3� 3 non constant matrix, 1 it is sufficient to study the 2� 2 constant

matrix B. This has already been noticed by Despr�es [9] who proposed a class of numerical schemes for

solving (21). The idea is the following: at each interface jþ 1
2
the matrix B is split into a positive part Bþ

jþ1
2

and a negative part B�
jþ1

2
:

B ¼ Bþ
jþ1

2

þ B�
jþ1

2
; with Bþ

jþ1
2
P 0; and B�

jþ1
2
6 0: ð25Þ
1 This is typically the case when using the Roe method.
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The numerical flux is therefore given by

f Vð Þnjþ1
2
¼

Bþ
jþ1

2

wn
jþ1 þ B�

jþ1
2
wn

j

� 1
2

wn
jþ1


 �t
Bþ

jþ1
2
wn

jþ1 � 1
2

wn
j


 �t
B�

jþ1
2
wn

j

0@ 1A; ð26Þ

where the choice of wn
jþ1 or w

n
j for the ‘‘up-winding’’ is made accordingly to the sign of B�. For this class of

schemes, it has been proved that when the matrices B� are symmetric, the scheme (22), (23), (25) and (26) is

entropic under CFL condition [9, Theorem 2].

It is to be noticed that choosing a splitting for B is equivalent to building an approximate Riemann

solver. We now give an example that will be used in the sequel: the approximate Riemann solver of Despr�es
[9]. This approximate Riemann solver is a variant of the Godunov acoustic solver [15] in which the speed of
sound has been frozen: ðqcÞnj ¼ ðqcÞnjþ1 ¼ ðqcÞ�jþ1

2
. Therefore, at each interface njþ1

2
the pressure p�

jþ1
2

and the

velocity u�
jþ1

2

are given by

u�
jþ1

2

¼ unjþunjþ1

2
þ 1

2 qcð Þ�
jþ1

2

pnj � pnjþ1


 �
;

p�
jþ1

2

¼ pnjþpnjþ1

2
þ

qcð Þ�
jþ1

2

2
unj � unjþ1


 �
:

8><>: ð27Þ

In terms of matrix splitting this is equivalent to

B�
jþ1

2
¼

� 1
2ðqcÞ�

jþ1
2

1
2

1
2

�
ðqcÞ�

jþ1
2

2

0@ 1A: ð28Þ

As it has been reported in previous studies [8,9], the closer ðqcÞ�jþ1
2
is to the local Lagrangian speed of sound,

the better the time step is. A good choice is given by

ðqcÞ�jþ1
2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max qn

j ðcnj Þ
2
; qn

jþ1ðcnjþ1Þ
2


 �
max 1=qn

j ; 1=q
n
jþ1


 �
vuuut : ð29Þ

With this definition, it is a simple matter to prove that ðqcÞ�jþ1
2
satisfies the following inequality:

min ðqcÞ2j ; ðqcÞ
2

jþ1


 �
6 ððqcÞ�jþ1

2
Þ2 6 max ðqcÞ2j ; ðqcÞ

2

jþ1


 �
:

The resulting scheme is then entropic under the CFL condition:

max
j

qcj
Dt
Dnj

6 1; ð30aÞ

with

qcj ¼ max
ðqcÞ�j�1

2
þ ðqcÞ�jþ1

2

2
;

1

ðqcÞ�j�1
2

  
þ 1

ðqcÞ�jþ1
2

!
ðqcÞ2j
2

!
: ð30bÞ
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3.2. Numerical schemes for the linearized flow

Using the formalismdescribed in the preceding section,we propose to discretize (18a) satisfiedby V̂, namely

oV̂

ot
þ o

on
df

dV
Vð ÞV̂

� 	
¼ S V; X̂; Ĥ


 �
; ð31aÞ

where

S V; X̂; Ĥ

 �

¼ � o

on
f Vð ÞĤþ sX̂

1

0

�p

0@ 1A; ð31bÞ

by a Godunov-type scheme of the form

V̂nþ1
j ¼ V̂n

j �
Dt
Dnj

g V; V̂

 �n

jþ1
2

�
� g V; V̂

 �n

j�1
2

�
þ DtS V; X̂; Ĥ


 �n
j
; ð32Þ

where gðV; V̂Þnjþ1
2
, which is consistent with dfðVÞ=dVV̂, is the linearized numerical flux.

From what has been done in the preceding section, the discretization of the source term is simply given by

S V; X̂; Ĥ

 �n

j
¼ � 1

Dnj
f Vð Þnjþ1

2



� f Vð Þnj�1

2

�
Ĥn

j þ snj X̂
n
j

1

0

�pnj

0@ 1A; ð33Þ

where fðVÞnjþ1
2
is defined by (26).

We are now interested in the discretization of the linearized flux gðV; V̂Þ. First, we note that the Fourier
transform of the linearized perturbation of w is given by ŵ ¼ dwðVÞ=dVV̂. Therefore, using (24) and since

B is a constant symmetric matrix, we have

g V; V̂

 �

¼ df

dw
dw
dV

ðVÞV̂ ¼ df

dw
ðwÞŵ ¼ Bŵ

�wtBŵ

� �
:

In order to derive the numerical flux gðV; V̂Þnjþ1
2
we simply use the matrix splitting (25) and the same ‘‘up-

winding’’ as for the basic flow:

g V; V̂

 �n

jþ1
2

¼
Bþ

jþ1
2
ŵn

jþ1 þ B�
jþ1

2
ŵn

j

� wn
jþ1


 �t
Bþ

jþ1
2

ŵn
jþ1 � wn

j


 �t
B�

jþ1
2
ŵn

j

0@ 1A ¼
�û�

jþ1
2

p̂�
jþ1

2

p�
jþ1

2

û�
jþ1

2

þ u�
jþ1

2

p̂�
jþ1

2

0BB@
1CCA; ð34Þ

where B� are exactly the matrices used to compute the basic solution.

Finally, thedifferential equations (18b–d) are integratedusing the following explicit finite difference scheme:

X̂nþ1
j ¼ X̂n

j þ Dt k2? snj p̂
n
j

0@ �
p�
jþ1

2

x̂n
jþ1

2

� p�
j�1

2

x̂n
j�1

2

Dnj
þ
x̂n
jþ1

2

� x̂n
j�1

2

Dnj
pnj

1A; ð35aÞ
x̂nþ1

jþ1
2

¼ x̂njþ1
2
þ Dt û�jþ1

2
; ð35bÞ
Ĥnþ1
j ¼ Ĥn

j þ Dt X̂n
j : ð35cÞ
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Remark 1. It is worth noticing that all Lagrangian systems of conservation laws with zero entropy flux

corresponding to fluid models can be rewritten in the form

oV

ot
þ o

on
Bw

� 1
2
wtBw

� �
¼ 0;

where B is a constant symmetric matrix and w the reduced entropic variable (see [9, Theorem 1]). Therefore

the ideas exposed here in the context of gas dynamics are immediately applicable to more complex systems,

such as a two-temperature fluid model, ideal magnetohydrodynamics, certain models of radiative hydro-

dynamics or of elasto-plasticity, etc. This same property is also responsible for the remarkable simplicity of
the numerical flux linearization procedure, a feature not granted by the Roe scheme linearization of [28].

Remark 2. As previously mentioned at the beginning of Section 3, a Godunov-type method based on a Roe

solver has already been developed in [28] for solving (16) and (18). It has been proved in [20] that, in the
context of gas dynamics, the flux (26) can be reinterpreted as a Roe flux, nevertheless the linearized versions

of these schemes are different [20].
3.3. Extension to second-order accurate schemes

Two standard approaches for increasing the order of accuracy of the above Godunov-type methods have

been tested: one relies on flux limiting and a Lax–Wendroff-type scheme [21], the other uses MUSCL

variable extrapolations (e.g. see [33]) in conjunction with a third order Runge–Kutta method [32].

3.3.1. The Lax–Wendroff scheme using flux limiters

The momentum and the energy equations of the basic flow can be manipulated to give, in a non con-

servative form:

ou
ot þ

op
on ¼ 0;

op
ot þ qcð Þ2 ou

on ¼ 0:

(
A Lax–Wendroff-type scheme is applied over a half-time step Dt=2 (we refer to [1] for further details) thus

giving a second-order approximation of the velocity and the pressure at each interface njþ1
2
, respectively

denoted u�;LW
jþ1

2

and p�;LW
jþ1

2

. This solver, say u�;HI and p�;HI, is connected to the first order one, u�;LO and p�;LO,
via a Van Leer flux limiter U (cf. [33]):

u�;HI ¼ Uu�;LO þ 1� Uð Þu�;LW;
p�;HI ¼ Up�;LO þ 1� Uð Þp�;LW;

�
ð36Þ

which reads, in an extended form

u�
jþ1

2

¼ unjþunjþ1

2
þ U 1

2 qcð Þ�
jþ1

2

pnj � pnjþ1


 �
þ 1� Uð Þ Dt

2

pnj�pnjþ1
1
2
ðDnjþDnjþ1Þ

;

p�
jþ1

2

¼ pnjþpnjþ1

2
þ U

qcð Þ�
jþ1

2

2
unj � unjþ1


 �
þ 1� Uð Þ Dt

2
qcð Þ�jþ1

2


 �2 unj�unjþ1
1
2
ðDnjþDnjþ1Þ

:

8><>:
Since the linearized flow satisfies a linear system of conservation laws, we infer that no flux limiting

techniques should be necessary for computing the linear perturbation. The situation is in fact much more

complex, because the perturbed flow is solution to a linear system of conservation laws with discontinuous

coefficients. In practice (see Section 4.3) the same limiter as for the basic flow is applied. Therefore, the

second-order scheme for computing the linearized solution corresponds to (32) where SðV; X̂; ĤÞnj is dis-

cretized by (33) in which fðVÞnjþ1
2
is the basic second-order flux defined by (36), while the second-order

linearized flux gðV; V̂Þnjþ1
2
is given by (36) with ûni and p̂ni in place of, respectively, uni and pni (for i ¼ j; jþ 1).
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3.3.2. MUSCL-type schemes

MUSCL-type schemes are here constructed by introducing piecewise linear distributions in each com-

putational cell, not only – as is usual (e.g. see [33]) – for some basic flow dependent variables Q,

QnðnÞ ¼ Qn
j þ DQn

j ðn� njÞ; nj�1
2
< n < njþ1

2
; ð37Þ

but also for dependent variable linear perturbation Fourier components, say Q̂,
Q̂nðnÞ ¼ Q̂n
j þ DQ̂n

j ðn� njÞ; nj�1
2
< n < njþ1

2
: ð38Þ
The cell-edge extrapolated values of the dependent variable pair ðQ; Q̂Þ, as defined by these linear distri-
butions, are then used for evaluating the numerical fluxes (26) and (34) in (22) and (32). Note that Q̂ may

not necessarily correspond to Q̂, the linear perturbation Fourier components of Q. In practice, the slopes

DQn
j in (37) are determined by applying the classical MINMODMINMOD slope-limiting function. As in the case of the

Lax–Wendroff-type scheme, the same slope-limiting process is here used for computing the slope DQ̂n
j in

(38). Two distinct pairs of dependent variables ðQ; Q̂Þ have been routinely tested. The first pair corresponds

to what is known as ‘‘slope limiting in local characteristic variables’’ for Q and its linearized version for Q̂.
This variable extrapolation presents the advantage of yielding results which are less oscillatory than those

obtained with other choices for Q, a feature especially desirable when computing solutions of (32). The
other pair is given by the primitive variables Q ¼ ðs; u;EÞt and their linear perturbations Q̂ ¼ ðŝ; û; ÊÞt, this
latter choice being exclusively used when the previous extrapolation method fails to guarantee the positivity

of extrapolated specific internal energy values.
4. Numerical results

As an illustration of the above numerical method capabilities to produce quantitative results for in-
stabilities of shocked multi-material flows, we have chosen to consider the Richtmyer–Meshkov instability.

Richtmyer–Meshkov instabilities occur when a planar shock wave collides, at normal incidence, with an

imperfectly flat interface separating two different fluids: interface perturbations grow following the shock-

interface interaction [29,25]. For sufficiently small perturbation amplitudes this growth is asymptotically

linear in time. In the absence of perturbations, the flow is simply a one-dimensional shock-contact dis-

continuity interaction. For a perturbed interface, geometrical defect amplitudes grow as the result of the

shear flow initiated by the complex interaction of the incident planar shock wave with the corrugated in-

terface. Hence, numerical computations of Richtmyer–Meshkov instabilities are particularly sensitive to
shock-contact approximation errors such as ‘‘wall-heating’’ effects, numerical smearing of contact dis-

continuities, and the ability to accurately describe shear motions.

In the following, we detail linear perturbation computation results of Richtmyer–Meshkov instabilities

involving two perfect gases of different adiabatic exponents, in the two cases of a reflected shock wave

(Section 4.1) and of a reflected rarefaction wave (Section 4.2). We then summarize (Section 4.3) the results

of a quantitative comparison – in terms of interface perturbation asymptotic growth rates – of our linear

perturbation calculations with the Richtmyer–Meshkov instability linear theory [35]. Although this com-

parison is exclusively based on interface perturbation growth rates, one should keep in mind that, in
complex flow stability studies, one is in fact interested in the detailed spatial and temporal behaviors of

perturbations. Such detailed descriptions which are readily available from linear perturbation calculations,

are way more arduous to extract from 2D/3D simulations.
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Basic flow initial conditions. Herein the basic flow initial conditions are defined as

V0
0ðnÞ ¼

Vs
L; if nmin < n < ns;

Vu
L; if ns < n < nR;

VR; if nR < n < nmax;

8<:
where nR denotes the location of the interface between the two fluids, ns that of the incident shock-wave

front which propagates from the L-fluid to the R-fluid, while Vs
L and Vu

L are respectively the shocked and

unshocked states of the L-fluid.

Both fluids being governed by perfect-gas equations of state – of adiabatic exponents cL and cR for,

respectively, the L- and R-fluid – the states Vu
L and VR are taken to be

Vu
L ¼

qu
L ¼ 1;

uuL ¼ 0;
puL ¼ 1;

8<: VR ¼
qR ¼ a;
uR ¼ 0;
pR ¼ 1;

8<:
where a is a parameter of the problem. In addition, we introduce the strength of the incident shock,

s ¼ 1� puL=p
s
L, whose value defines the shocked state Vs

L via the Rankine–Hugoniot jump relations.

Linear perturbation initial conditions. Given the above definition of the basic flow initial conditions, linear

perturbation initial conditions are given as compact support solutions of Eq. (C.3) and of the boundary

value problems (C.5) and (C.6) introduced in Appendix C. For convenience, the initial perturbation am-

plitude of the material discontinuity surface is chosen to be of unit length: c/S ¼ 1 in (C.5) and (C.6). Letting

½na; nb�, with nmin < na < nR < nb < nmax, denote the compact support of these initial conditions, we take, for

a given spatial discretization ðnjþ1
2
Þ of the interval ½nmin; nmax�, the values of na and nb to be such that

nj�þ1
2
� na < Dnj� ; and nb � nj�þ1

2
< Dnj�þ1;

where nj�þ1
2
¼ nR is the cell edge corresponding to the material contact discontinuity. Consequently, the

discrete approximation of the solutions ðx̂0; Ĥ0Þ to the boundary value problems (C.5) and (C.6) is given by

x̂0;jþ1
2
¼ 1 for j ¼ j�;

0 otherwise;

�
with Ĥ0;j ¼

x̂0;j�1
2
� x̂0;jþ1

2

Dxj
: ð39Þ

We note that although the solutions ðx̂0; Ĥ0Þ of (C.5) and (C.6) have not been explicitly given, their discrete
approximation (39) is uniquely defined. These definitions are completed by the equalities V̂0;j ¼ 0 and

X̂0;j ¼ 0 stemming from Eq. (C.3) and from the fact that the fluids are initially at rest. From a practical

standpoint, such discrete initial conditions are more convenient to handle than a discrete form of the Dirac

measure initial conditions of [13, Eq. (46)].

Numerical growth rates. In Lagrangian coordinates, the contact discontinuity is stationary. Therefore

one may easily determine the numerical growth rate of the Richtmyer–Meshkov instability, say x, by
means of the relation

xðtnÞ ¼
dx̂
dt

nj�þ1
2
; tn


 �
¼ û nj�þ1

2
; tn


 �
¼ û�j�þ1

2
:

However in order to minimize the uncertainties due to oscillations in the velocity profiles (see Figs. 3 and 7)

when determining these velocities, we have computed numerically the slopes of x̂j�þ1
2
ðtÞ by means of a least-

square fit. Note that, in the sequel, we will in fact refer to what is called in the literature the normalized

growth rate, defined by (see [35])

xNGR ¼ x
k?r

;

where k? is the perturbation transverse wavenumber and r the Eulerian speed of the incident shock wave.
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4.1. Case of a reflected shock wave

In regards to [13], the interest of our numerical method is its ability to take into account two fluids
governed by different equations of state. Considering the adiabatic exponent pair ðcL; cRÞ ¼ ð1:5; 3Þ, and the

parameter values a ¼ 4, s ¼ 0:5, it can be proved that the reflected and transmitted waves, resulting from

the shock-interface interaction, are both shock waves. Fig. 1 gives the density profiles of the basic flow at

t ¼ 0 and t ¼ 3 in Eulerian coordinates, Fig. 2 the profile of linear perturbations at t ¼ 3 and Fig. 3 the time

evolutions of the perturbed longitudinal speed and perturbed amplitude at the interface.

It has been shown in [13] (see Remark 1 and Eq. (B.9)) that the linear perturbation writes

V̂ðn; tÞ ¼ V̂ðn; tÞ
n o

þ
X3
j¼1

ŵj½V0�dRj ;

i.e. as the sum of a function fV̂ðn; tÞg and of Dirac masses carried by the discontinuity lines Rj of the basic

flow, which is exactly what is shown in Fig. 2. Note that since ½u0� ¼ ½p0� ¼ 0 across the interface R2, Dirac

masses on û and p̂ are not present at this interface. Nevertheless they are visible on the reflected (R1) and
transmitted (R3) shock fronts. These Dirac masses interact with the acoustic waves that propagate between

these two shocks. We clearly see the perturbation growth at the interface (especially on x̂).
Fig. 3 shows the time evolution of the normalized perturbed longitudinal speed at the interface, û=ðk?rÞ.

We clearly see regular oscillations (of acoustic origin) about a mean value which corresponds to those

predicted by the impulsive model of Vandenboomgaerde et al. [34] or by the linear theory developed by

Yang et al. [35]. The profile of the time evolution of the perturbation amplitude is even more significant.

Before the shock front hits the interface (which happens at t ’ 0:8), the amplitude of the perturbation is

a�0 ¼ 1. Right after the interaction, this amplitude theoretical value is aþ0 ¼ ð1� Du=rÞa�0 (see [34] for in-
stance), while the ongoing amplitude evolution becomes clearly linear. The normalized growth rate ob-

tained in this case is xNGR ¼ 0:1004 (which is to be compared to xNGR ¼ 0:098 for the impulsive model [34]

and xNGR ¼ 0:1 for the linear theory [35]).

In addition, we have performed a convergence study, giving the growth rate of the perturbation with

respect to the number of cells per unit of transverse wavelength, for first- and second-order schemes (Fig. 4).

This study shows that in order to get less than 5% of relative error, we must use at least 400 (respectively

100) cells per unit of transverse wavelength with the first- (respectively second-) order scheme.
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Fig. 1. Density profiles of the basic flow at t ¼ 0 (left) and t ¼ 3 (right). The reflected wave is a shock wave. Parameters are cL ¼ 1:5,

cR ¼ 3, a ¼ 4 and s ¼ 0:5.
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Fig. 2. Perturbation profiles at t ¼ 3. The interface is located at x ’ 5:7. Parameters are given by cL ¼ 1:5, cR ¼ 3, a ¼ 4 and s ¼ 0:5.

Fig. 3. Time evolutions of the normalized perturbed longitudinal speed (left) and amplitude (right) at the interface. Horizontal lines

(left) are the normalized growth rates obtained by Vandenboomgaerde et al. [34] and by Yang et al. [35]. Parameters are given by

cL ¼ 1:5, cR ¼ 3, a ¼ 4 and s ¼ 0:5.
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Fig. 4. Convergence study. Normalized growth rates as given by the first- (––) and second- (– –) order schemes vs. the number of cells

per unit of transverse wavelength.
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4.2. Case of a reflected rarefaction wave

For the adiabatic exponent pair ðcL; cRÞ ¼ ð3; 1:5Þ, and the parameter values a ¼ 0:25, s ¼ 0:5, the re-

flected wave is a rarefaction wave. Fig. 5 shows the density profiles of the basic flow at t ¼ 0 and t ¼ 2. We

clearly see these two waves together with the contact discontinuity.

Fig. 6 gives the profiles of perturbations at t ¼ 2. Comments are similar to those made for Fig. 3:

perturbations are sums of functions and Dirac masses carried by the discontinuity lines of the basic flow.

Since the reflected wave is a rarefaction wave – which is regular – no Dirac masses appear about this wave.
Fig. 7 gives the time evolution of the perturbed (normalized) longitudinal speed and of the perturbation

amplitude at the interface. The growth rate obtained with our method is in agreement with those we have

found in the literature: we find xNGR ¼ �0:14003, which is to be compared with the value xNGR ¼ �0:14
of the impulsive model [34] and of the linear theory [35]. The x̂-profile is similar to that of Fig. 3. Fur-

thermore we have access to the compression factor linking the pre-shocked and post-shocked amplitudes

a�0 and aþ0 .
4.3. Comparisons of normalized growth rates

We have performed many numerical tests in order to compare the growth rates obtained with our ap-

proach together with those predicted by the impulsive model of Vandenboomgaerde et al. [34] and those

computed from the linear theory of Yang et al. [35]. The results of these comparisons are summarized in

Table 1 for the cases of reflected shock waves, and in Table 2 for the cases of reflected rarefaction waves.

Varying parameters are the adiabatic exponents cL and cR, the incident shock strength s and the pre-

shocked density ratio a ¼ qR=q
u
L. For each entry the first two values are those given respectively by the
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Fig. 7. Time evolutions of the normalized perturbed longitudinal speed (left) and amplitude (right). The horizontal line (left) is the

normalized growth rate obtained by Vandenboomgaerde et al. [34] and by Yang et al. [35]. Parameters are given by cL ¼ 3, cR ¼ 1:5,

a ¼ 0:25 and s ¼ 0:5.
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impulsive model [34] and the linear theory of Yang et al. [35], while the third one is that obtained with our

second-order schemes using 500 cells per unit of transverse wavelength.

Through these two tables we observe a good agreement, in general, between our results and those ob-

tained by the linear theory of Yang et al. [35] and, to a lesser extent, with those of the impulsive model [34].

Results are more especially closer as the shock strength decreases and as the adiabatic exponents are large –
a fact noticed in [34], the authors stating therein that the impulsive model gives a fairly good approximation

of the growth rate within its domain of validity: s6 0:4 and cmax=cmin 6 1:5. This fact had already been

mentioned in [35].

Discrepancies between our computed results and those of the linear theory [35] are most noticeable for

some of the moderate (s ¼ 0:5) and large (s ¼ 1) shock strength configurations – see, for example, the

entries of Table 1 or Table 2 when s ¼ 1, in the cases of:

• ðcL; cRÞ ¼ ð1:1; 1:1Þ, for qR=q
u
L ¼ 16 or 1=16;

• ðcL; cRÞ ¼ ð1:5; 3Þ, for qR=q
u
L ¼ 1:1;

• ðcL; cRÞ ¼ ð3; 1:5Þ, for qR=q
u
L ¼ 0:91.

For such configurations, numerical growth rates were found to be quite sensitive (up to 40% of dis-

crepancy) with respect to the second-order scheme used. In particular, differences in the basic flow nu-

merical results have been observed under the form of more or less pronounced ‘‘wall-heating’’ effects about

the interface. Indeed, if a Lagrangian description of the flow ensures that material interfaces are sharply

resolved, Godunov-type schemes in Lagrangian coordinates are known to over-predict temperatures at

shocked contact discontinuities. The corresponding errors, on the basic flow density and temperature

values, which may be modified – but not suppressed – by the method chosen for achieving second order
accuracy, are not, of course, without consequences for the linearized flow results. In that respect, we cannot

state at this point which of the second order schemes of Section 3.3 should be preferably used. However, in

connection with these wall-heating errors, we have found that some flux or slope limiting was necessary for

the linearized flow second order schemes to produce, in all circumstances, reliable results with the discrete

initial conditions (39).

Let us mention that the aforementioned sensitivity of the computed growth rates is less pronounced

(i.e. with discrepancies about 10% or less) for discrete initial conditions which are ‘‘smoother’’ than (39).

However when considering initial conditions ðx̂0; Ĥ0Þ with compact supports spanning several computa-



Table 1

Comparison of normalized growth rates obtained with the impulsive model of Vandenboomgaerde et al. [34], the linear theory of Yang

et al. [35] and the second order schemes developed in this paper using 500 cells per unit of transverse wavelength

cL=cR s qR=q
u
L

1.1 2 4 8 16

1.1/1.1 1 0.023 0.150 0.252 0.303 0.32

0.004 0.031 0.064 0.094 0.11
a 0.004 0.033 0.072 0.111 0.15

0.5 0.017 0.104 0.16 0.17 0.15

0.015 0.093 0.14 0.15 0.13

0.015 0.091 0.14 0.15 0.13

0.05 0.0021 0.012 0.018 0.018 0.016

0.0021 0.012 0.018 0.018 0.016

0.0021 0.012 0.018 0.018 0.016

3/3 1 0.017 0.103 0.16 0.17 0.15

0.014 0.089 0.14 0.16 0.14
a 0.016 0.097 0.16 0.18 0.17

0.5 0.0084 0.050 0.074 0.076 0.067

0.0081 0.049 0.072 0.075 0.065

0.0083 0.049 0.072 0.075 0.067

0.05 0.00078 0.0046 0.0067 0.0068 0.0060

0.00078 0.0046 0.0067 0.0068 0.0060

0.00080 0.0046 0.0068 0.0070 0.0062

1.5/3 1 )0.033 0.064 0.141 0.179 0.19

)0.0038 0.071 0.14 0.19 0.20
a )0.019 0.062 0.15 0.20 0.22

0.5 )0.002 0.060 0.098 0.105 0.094

0.004 0.064 0.10 0.11 0.095

0.004 0.063 0.10 0.11 0.097

0.05 0.00114 0.0073 0.010 0.010 0.0089

0.0012 0.0073 0.010 0.010 0.0089

0.0012 0.0073 0.010 0.010 0.0089

The reflected wave is a shock wave. In each entry, the first value corresponds to the impulsive model [34], the second one to the

linear theory [35] and the third to our numerical result.
aNumerical results are obtained for a shock strength s ¼ 1–10�6.
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tional cells, linearized flow numerical results – whether obtained with first- or second-order schemes – do

depend on the actual definitions of the functions x̂0 and Ĥ0. This dependency is better illustrated if we

focus on the propagation, within the L-fluid, of the incoming shock-wave in the particular case where the

material interface R is not perturbed. In this case, the initial conditions ðx̂0; Ĥ0Þ are chosen among the

solutions to the boundary value problems (C.5) and (C.6) with c/S ¼ 0. At the continuous level, the so-
lutions to system (18) thus correspond to the basic flow, and this regardless of the values taken by x̂0 and
Ĥ0 within ðnmin; nRÞ. Otherwise stated, the corresponding linear Eulerian perturbations are identically

zero. However, numerical experiments with non-zero values of the initial conditions ðx̂0; Ĥ0Þ show that the

computed linear Lagrangian perturbations are characterized by significant levels of linear Eulerian per-

turbations. Such errors may affect the shock-interface interaction thus leading to inaccuracies in the

description of a subsequent Ritchmyer–Meshkov instability. In the absence of a remedy for this numerical

defect, the initial condition definition (39) presents the advantage, over other choices, of alleviating such

inaccuracies.



Table 2

Comparison of normalized growth rates obtained with the impulsive model of Vandenboomgaerde et al. [34], with the linear theory of

Yang et al. [35] and with the second order schemes developed in this paper using 500 cells per unit of transverse wavelength

cL=cR s qR=q
u
L

0.91 0.5 0.25 0.125 0.0625

1.1/1.1 1 )0.0230 )0.172 )0.33 )0.43 )0.5
)0.0039 )0.025 )0.042 )0.047 )0.044

a )0.0037 )0.025 )0.041 )0.058 )0.075
0.5 )0.017 )0.13 )0.26 )0.35 )0.41

)0.016 )0.12 )0.24 )0.33 )0.39
)0.015 )0.12 )0.24 )0.34 )0.41

0.05 )0.0021 )0.017 )0.035 )0.051 )0.062
)0.0021 )0.017 )0.035 )0.051 )0.062
)0.0020 )0.017 )0.035 )0.050 )0.062

3/3 1 )0.017 )0.13 )0.25 )0.33 )0.42
)0.014 )0.11 )0.22 )0.31 )0.38

a )0.014 )0.11 )0.22 )0.32 )0.40
0.5 )0.0086 )0.069 )0.14 )0.20 )0.24

)0.0085 )0.068 )0.14 )0.19 )0.24
)0.0080 )0.067 )0.14 )0.20 )0.24

0.05 )0.00081 )0.0065 )0.013 )0.019 )0.024
)0.00081 )0.0066 )0.013 )0.019 )0.024
)0.00076 )0.0065 )0.013 )0.019 )0.024

3/1.5 1 0.04 )0.086 )0.23 )0.35 )0.43
0.016 )0.073 )0.18 )0.28 )0.36

a 0.029 )0.072 )0.18 )0.28 )0.36
0.5 )0.0001 )0.068 )0.14 )0.20 )0.25

0.0011 )0.066 )0.14 )0.20 )0.25
0.0015 )0.065 )0.14 )0.21 )0.25

0.05 )0.00088 )0.0074 )0.015 )0.021 )0.025
)0.00088 )0.0074 )0.015 )0.021 )0.025
)0.00084 )0.0072 )0.014 )0.021 )0.025

The reflected wave is a rarefaction wave. In each entry, the first value corresponds to the impulsive model [34], the second one to the

linear theory [35] and the third to our numerical result.
aNumerical results are obtained for a shock strength s ¼ 1–10�6.
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5. Conclusion

The Godunov-type schemes presented here offer rather accurate and robust methods for computing –

very efficiently, as compared to 2D/3D calculations – multi-dimensional linear perturbations about 1D

planar-symmetric flows. These methods which rely on a Lagrangian perturbation formulation and an

approximate Riemann solver, are well suited for handling geometrically perturbed material interfaces

separating fluids governed by different equations of state. Moreover, the linearized numerical flux which is

at the heart of the linear perturbation schemes is obtained in a straightforward manner, the principles

involved being immediately applicable to more sophisticated fluid models with zero entropy flux such as
two-temperature plasma equations, ideal magnetohydrodynamics, certain models of radiative hydrody-

namics or of elasto-plasticity, etc. The scheme numerical capabilities have been illustrated on the simple, yet

demanding, configuration of the Richtmyer–Meshkov instability of a single material interface between two

perfect gases. Taking advantage of the efficiency of the proposed methods, we have been able to carry out a

systematic comparison of linear instability growth rates, extracted from linear perturbation calculations,
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with the linear theory results of [35] where various shock strength, fluid density and adiabatic exponent

values were considered. Good overall agreement between these two series of results is found. Sources of

slight existing discrepancies have been identified to be: (i) wall-heating effects present in the basic flow
computations – essentially noticeable for very strong shock waves – and (ii) current definition of linearized

flow discrete initial conditions for a perturbed material interface. Further improvements of the present

numerical methods should address these two points and include, eventually, the search for a higher ac-

curacy through the use of higher order schemes. Let us mention that the present schemes, as well as those of

[28], have been applied to more complex situations such as the stability of a detonation front [20].

Several open questions, with respect to numerical approximations of linearized flows, will be addressed

in future works, in particular the treatment of boundary conditions and an extension to spherically-sym-

metric basic flows. Let us also note that the present perturbation approach is purely Lagrangian and that an
Eulerian equivalent, although raising additional difficulties when handling perturbed material interfaces,

would be worth pursuing.
Appendix A. Properties of linear Lagrangian perturbations

Herein, for the sake of completeness, we recall two classical results of linear Lagrangian perturbations

(see [2, Chapter VIIVII, Eqs. (12) and (15)]) along with their derivation using the notations of this paper.

Proposition 1. The linear Lagrangian perturbation of the Jacobian J of (5) is given by the expression

d1J ¼ J 0 od
1xj

onk
d0 onk

oxj

� �
: ðA:1Þ
Proof. From the definition of the Jacobian J as the determinant (5), we have

d1J ¼ d1 det
oxi
onj

� �� �
¼ d0 Jklð Þd1 oxk

onl

� �
¼ d0J
� �

kl

od1xk
onl

;

where Jkl denotes the cofactor of oxk=onl in the expression of det oxi=onj
� �

. Writing down

od1xk
onl

¼ od1xk
onm

d0 onm
oxn

� �
od0xn
onl

;

it comes that

d1J ¼ d0J
� �

kl

od0xn
onl

od1xk
onm

d0 onm
oxn

� �
:

Since the sum

d0J
� �

kl

od0xn
onl

is zero as soon as n 6¼ k, and since otherwise

d0J
� �

kl

od0xk
onl

¼ d0J ;

we obtain (A.1). �
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Proposition 2. For any scalar function �u of the variables ðx; t; eÞ, we have

d1 o�u
oxj

 !
¼ od1u

onk

�
� ou0

onm
d0 onm

oxl

� �
od1xl
onk

�
d0 onk

oxj

� �
; 16 j6 3: ðA:2Þ
Proof. By considering d1ð�Þ applied to the partial derivatives ou=oni, we may write

d1 ou
oni

� �
¼ od1u

oni
¼ d1 o�u

oxj

oxj
oni

 !
¼ d1 o�u

oxj

 !
od0xj
oni

þ d0 o�u
oxj

 !
od1xj
oni

; 16 i6 3;

thus implying that

d1 o�u
oxj

 !
od0xj
oni

¼ od1u
oni

� od0u
onk

d0 onk
oxj

� �
od1xj
oni

; 16 i6 3:

Since

od0xj
oni

d0 oni
oxl

� �
¼ djl; 16 j; l6 3;

where djl is Kronecker�s delta symbol, it ensues that

d1 o�u
oxj

 !
od0xj
oni

d0 oni
oxl

� �
¼ d1 o�u

oxl

 !
¼ od1u

oni

�
� od0u

onk
d0 onk

oxj

� �
od1xj
oni

�
d0 oni

oxl

� �
; 16 l6 3;

which is the desired result. �
Appendix B. Linear perturbation equations for 1D planar-symmetric basic motions

Given the definition (see Section 2.2) of the coordinate system (n1; n2; n3), the Jacobian matrix of the

mapping x 7!n reads, for e ¼ 0,

d0 oni
oxj

� �� �
¼

1
s0 0 0

0 1 0

0 0 1

0@ 1A:

Using this result, the first integral linear perturbation (11) becomes

d1s ¼ od1x1
on1

þ s0r? � d1x?; ðB:1Þ

while, benefiting from the fact that the basic solution is independent of the variables ðn2; n3Þ, the system of

linear perturbation conservation laws (12) reduces to

od1V

ot
þ o

on1
d1G1ðVÞ þ s0

o

onj
d1GjðVÞ

� 	
j 6¼1

þ o

on1
G1 V0
� �

r? � d1x? � o

on1
Gj V0
� � od1x1

onj

� 	
j6¼1

¼ 0;

ðB:2Þ
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with the notations: d1x? ¼ d1x2e2 þ d1x3e3, d
1u? ¼ d1u2e2 þ d1u3e3, for the transverse linear Lagrangian

displacement and velocity fields, and r? ¼ ðon2 on3Þ
t
for the transverse gradient operator. Taking into

account the expressions (3) and (13) for the flux components GjðV0Þ and their linear Lagrangian pertur-
bations, the above system actually reads

od1s
ot

� od1u1
on1

� s0r? � d1u? � ou01
on1

r? � d1x? ¼ 0; ðB:3Þ
od1u1
ot

þ od1p
on1

þ op0

on1
r? � d1x? ¼ 0; ðB:4Þ
od1u?

ot
þ s0r?d

1p � op0

on1
r?d

1x1 ¼ 0; ðB:5Þ
od1e
ot

þ o

on1
d1 pu1ð Þ þ s0p0r? � d1u? þ o

on1
p0u01
� �

r? � d1x? ¼ 0: ðB:6Þ

Classically (e.g. see [5]), the formulation of such a system may be simplified upon performing a Helmholtz

decomposition of the vector field d1x?.
B.1. Helmholtz decomposition of the transverse displacement field

By Helmholtz�s theorem (e.g. see [26]) the vector field d1x? may be decomposed as

d1x? ¼ r? �Wþr?U;

with W ¼ W1e1, W1 being the stream function of the solenoidal part of d1x?, and U, the displacement

potential, solution of the Poisson equation r2
?U ¼ r? � d1x?. Eq. (B.5), implies that or2

?W1=ot is constant
in time, whence that solenoidal transverse motions are solid rotations about the x1-axis with angular ve-

locities determined by initial conditions. Consequently, the transverse motion may be reduced to its irro-

tational part which is entirely determined by r? � d1x?. Introducing the new variables

d1H ¼ r? � d1x? and d1X ¼ r? � d1u?; ðB:7Þ

the vector equation (B.5) is replaced by the scalar equation

od1X
ot

þ s0r2
?d

1p � op0

on1
r2

?d
1x1 ¼ 0: ðB:8Þ

With obvious changes in notations, Eqs. (B.3), (B.4), (B.6) and (B.8) form then a system of equations for

the unknowns ðd1s; d1u1; d
1X; d1eÞ, while the trajectory equation (10) is replaced by

od1x1
ot

¼ d1u1;
od1H
ot

¼ d1X; ðB:9Þ

and the first integral (B.1) expressed in terms of d1H.
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Appendix C. Initial conditions for a perturbed material contact discontinuity

As a particular example of initial conditions for the system of Eqs. (18), we focus on the case of a

material contact discontinuity, say R, separating two immiscible fluids which are assumed, for the sake of

simplicity, to be initially at rest. Without loss of generality we may assume that in the unperturbed con-

figuration – i.e. for e ¼ 0 – the discontinuity R coincides with the planes of equations x1 ¼ 0 and n1 ¼ 0 in

their respective coordinate system. Identifying the fluid initially located, when e ¼ 0, within the half-plane

x1 < 0 (respectively x1 > 0) by the subscript L (resp. R), we convene that the domains – in the (n1; n2; n3)-
space – occupied by the L- and R-fluids are respectively:

DL ¼ n;f �1 < n1 < 0g; and DR ¼ n; 0f < n1 < þ1g;

while the discontinuity R coincides with the plane

P ¼ n; n1f ¼ 0g: ðC:1Þ

We emphasize that by virtue of the principles of Lagrangian perturbations recalled in Section 2.1 the

definitions of DL, P and DR are invariant as ðt; eÞ spans ð0; T Þ �I0.

When considering perturbed initial conditions we require:

1. For any fluid particle, the initial values of the thermodynamical variables s and E to be independent of

the value of e in I0.
2. The restriction to DL (respectively DR) of the mapping n 7!x to be a diffeomorphism between DL (resp.

DR) and its image, say DLðeÞ (resp. DRðeÞ), whatever e in I0.

3. For all e in I0, the discontinuity R to remain a material contact discontinuity and to be defined – in the

cartesian coordinate system – by the surface S of equation

x1 ¼ e/Sðx2; x3Þ; ðC:2Þ

where /S is a function defined in R2.

From the first of these requirements, we immediately conclude that

ŝ0ðn1Þ ¼ 0;
Ê0ðn1Þ ¼ 0;

	
for�1 < n1 < 0 and 0 < n1 < þ1; ðC:3Þ

for all k? in R2. This result and requirement 2 hereinabove imply then that the vector field d1x0 is solenoidal

in DL [DR, or equivalently – in terms of transverse Fourier components – that

o bx1 0
on1

þ s00Ĥ0 ¼ 0; ðC:4Þ

for n1 in ð�1; 0Þ [ ð0;þ1Þ. Given that a priori the sole boundary condition bearing on the field
ð bx10; Ĥ0Þ is bx1 0ð0Þ ¼ c/S , as deduced from the definitions (C.1) and (C.2) of R, we require in addition

that bx1 0 be vanishing as jn1j ! þ1, and therefore consider the following boundary value problems

(BVPs):

Find the pair of functions ð bx10; Ĥ0Þ : n1 2 ð�1; 0Þ [ ð0;þ1Þ 7!ð bx1 0; Ĥ0Þðn1Þ 2 R2 solution of

obx1 0
on1

þ s00;LĤ0 ¼ 0; �1 < n1 < 0;

limn1!�1 bx1 0 ¼ 0; limn1!0� bx10 ¼ c/S ;

(
ðC:5Þ

and
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obx1 0
on1

þ s00;RĤ0 ¼ 0; 0 < n1 < þ1;

limn1!0þ bx10 ¼ c/S ; limn1!þ1 bx1 0 ¼ 0:

(
ðC:6Þ

We note that we may require bx10 and Ĥ0 to be, respectively, Ckþ1 and Ck functions, for some integer kP 0,

in ð�1; 0Þ [ ð0;þ1Þ or even in R. Solutions to such BVPs are not unique unless additional constraints on
the field d1x0 are imposed. Hence, for example, requiring d1x0 to be irrotational leads to a unique definition

of ð bx1 0; Ĥ0Þ, as solutions of Laplace�s equation in the intervals ð�1; 0Þ and ð0;þ1Þ, with bx1 0 continuous in
R and Ĥ0 discontinuous across n1 ¼ 0. These considerations along with the definitions (C.3) of ŝ0 and Ê0

show that initial values of ðV̂; X̂; bx1 ; ĤÞ corresponding to a geometrically perturbed material contact dis-

continuity may be chosen here in the class of functions.
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